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E-mail: martine.philipp@uni.lu

Received 18 August 2008, in final form 23 October 2008
Published 10 December 2008
Online at stacks.iop.org/JPhysCM/21/035106

Abstract
The non-equilibrium process of polymerization of reactive polymers can be accompanied by
transition phenomena like gelation or the chemical glass transition. The sensitivity of the
mechanical properties at hypersonic frequencies—including the generalized Cauchy
relation—to these transition phenomena is studied for three different polyurethanes using
Brillouin spectroscopy. As for epoxies, the generalized Cauchy relation surprisingly holds true
for the non-equilibrium polymerization process and for the temperature dependence of
polyurethanes. Neither the sol–gel transition nor the chemical and thermal glass transitions are
visible in the representation of the generalized Cauchy relation. Taking into account the new
results and combining them with general considerations about the elastic properties of the
isotropic state, an improved physical foundation of the generalized Cauchy relation is proposed.

1. Introduction

The mechanical properties of reactive polymers [1–5] can be
varied substantially from those of liquids to those of solids.
External parameters like temperature, pressure and chemical
conversion cause changes of their mechanical properties via
molecular dynamics, anharmonicity and equilibrium and non-
equilibrium phase transitions [4–13]. Typical states which may
appear are those of liquids, gels, glasses and crystals. At least
on a sufficiently large length scale, most of these states show
isotropic symmetry [4, 5].

As an example of reactive network-forming polymers
polyurethanes (PUs) are used in this work. At the beginning of
the chemical reaction these materials behave as liquids when
measured at low probe frequencies. At sufficiently high probe
frequencies f = ω/2π and small perturbation amplitudes,
the same materials behave as dynamically frozen liquids in
the linear response regime (Hooke’s regime [1–4]). Under the

4 Author to whom any correspondence should be addressed.

latter conditions and according to the PUs’ isotropic symmetry,
the isotropy condition in Voigt notation [1, 2, 4] c∞

12 = c∞
11 −

2c∞
44 (‘∞’ i.e. ωτ � 1, for all mechanically relevant relaxation

times τ ) [4, 5] is valid and the elastic tensor contains in
principle two independent elastic moduli, the high frequency
frozen longitudinal modulus c∞

11 and the high frequency frozen
shear modulus c∞

44 [1–5]. The dynamically frozen state is
also called the slow motion regime. Decreasing the probe
frequency e.g. from the GHz regime to low frequencies the
elastic properties undergo in the regime of acoustic excess
attenuation a transition from the so-called slow motion regime
to the fast motion regime [8, 9]. In the course of polymerization
the acoustic excess attenuation regime is shifted to lower
frequencies, and as soon as the sol–gel transition [6, 7] is
passed, static shear stiffness appears.

Using Brillouin spectroscopy the non-equilibrium chem-
ically induced sol–gel and glass transitions of epoxies and
polyurethanes have been investigated recently using the high
frequency elastic moduli and pseudo-mode Grüneisen parame-
ters (MGPs) [8, 14]. As a result, the chemically induced glass
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transitions could be identified as an anomaly of the MGPs in
the course of polymerization, but the sol–gel transitions did not
affect the evolution of the MGPs [14]. For the epoxies the same
data were evaluated to analyse the influence of both isostruc-
tural transitions on second order elasticity via the generalized
Cauchy relation (gCR)

c∞
11 = 3 · c∞

44 + A (1)

with A being a constant for a given material [8, 15]. As a result,
neither the chemically induced sol–gel nor the glass transitions
were observed in the c∞

11 = c∞
11(c

∞
44) representation.

The finding concerning this non-equilibrium structure
formation was a fortiori astonishing because (i) by definition a
prominent anomaly of the static shear modulus develops at the
sol–gel transition [6, 7] and (ii) by quenching a glass-forming
liquid the transition to the forced non-equilibrium state could
be evidenced by a violation of the gCR in the glassy state [16].

Based on these controversial findings, the central aim of
the present work is twofold: to elucidate the role of non-
equilibrium processes like polymerizations for the gCR and in
turn to provide a better understanding of the gCR for isotropic
(e.g. amorphous) materials. For this purpose we will

(i) define the physical prerequisites of Cauchy relations for
crystalline and amorphous solids and their extension to
dynamically frozen liquids,

(ii) give a new interpretation of the Cauchy parameter A of the
gCR,

(iii) display and discuss the measured data for PUs obtained
by Brillouin spectroscopy, refractometry and infrared
spectroscopy in a more physical way as was done for some
of these data, published in [14],

(iv) study the range of validity of the gCR for the selected PUs
in order to verify whether the insensitivity of the gCR to
the aforementioned non-equilibrium transitions of epoxies
was accidental or whether there are more general reasons
behind it,

(v) compare the different physical information provided by
the gCRs and MGPs.

2. Sample preparation and experimental techniques

2.1. The polyurethanes

To attain the aforementioned goals the isothermal polymeriza-
tion of three different stoichiometric polyurethanes (PUs) was
investigated. The same products from Bayer™ were used for
the three PU compositions: as hardener Desmodur CD™ and
as resin different mixtures of Desmophen 1380BT™ and
Desmophen 2060BD™. Depending on the resins’ mixtures
(PU 1380BT:2060BD molar ratios) the PUs are either visco-
elastic (PU 80:20) or glassy (PU 95:5 and PU 100:0) after poly-
merization at room temperature (RT = 297 K) (see [14]).

2.2. Brillouin spectroscopy

Since we are interested in the evolution of elastic moduli at
the cross-over from the liquid to the solid amorphous state,

high performance Brillouin spectroscopy (BS) is used to probe
the desired elastic properties in the high frequency regime
(some GHz). Details of the measurement technique are given
elsewhere [8, 9, 14]. Having measured the sound frequencies
fL,T(q⇀90A

), the longitudinal and transverse sound velocities
v∞

L and v∞
T can be calculated (L, longitudinally, T, transversely

polarized sound mode):

v∞
L,T

(
q⇀90A

)
= fL,T

(
q⇀90A

)
·�90A = fL,T

(
q⇀90A

)
· λlaser√

2
(2)

where λlaser is the vacuum laser wavelength, �90A = 376 nm
is the acoustic wavelength related to the 90A-scattering
geometry and |q⇀90A| = 2π/�90A is the adjusted phonon
wavevector [8, 9, 14]. It should be stressed that in the 90A-
scattering geometry the acoustic wavelength �90A is strictly
independent of the refractive index [8, 9].

In the slow motion regime the longitudinal and transverse
sound frequencies fL and fT are real quantities. Knowing the
mass density ρ of the sample, the longitudinal and shear elastic
moduli c∞

11 and c∞
44 can be determined according to

c∞
11,44 = ρ · (

v∞
L,T

)2
. (3)

While investigating chemical reactions by Brillouin spec-
troscopy the accumulation time for the Brillouin spectra has
to be short compared to the progress of the chemical reaction
(ca 3 min).

2.3. Refractometry

The refractive indices n were measured during the PU
polymerizations with a high precision refractometer (Abbemat
from Anton Paar OptoTec GmbH) for the optical wavelength
589.3 nm. This refractometer has the high absolute accuracy
of 10−5 and a relative accuracy of 10−6. Using the measured
refractive index data, the mass densities ρ are determined by
the Lorentz–Lorenz relation [17, 18]:

ρ = 1

r
· n2 − 1

n2 + 2
(4)

where r = 0.277 cm3 g−1 is the specific refractivity [14].
It was shown for epoxies and polyurethanes that the
specific refractivity r is almost a constant during RT
polymerization [8].

2.4. Infrared spectroscopy

The degree of polymerization is investigated for the three
PUs using a Fourier transform infrared spectrometer from
Bruker Optics. The chemical conversion is determined by
the temporal decrease of a typical band for the hardener’s
molecules at 2271 cm−1 involved in the reaction process [14].
To avoid external influences on the measurement (temperature,
air composition fluctuations, etc) the height of this band
is normalized by that of a reaction independent CH-stretch
vibration [14].
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3. Results and discussion

3.1. Second order elasticity and the generalized
Cauchy relation

The structure of the elastic tensor and the number of its
independent coefficients is determined by symmetry [1–5]. For
single crystals it is well known that under special conditions,
which go beyond usual symmetry arguments, the number of
independent elastic moduli is reduced [3, 4]. So-called Cauchy
relations (CRs) create additional relations between elastic
moduli that are usually independent. The necessary conditions
derived for the appearance of CRs in crystals are [3, 4] (i)
no lattice anharmonicity, (ii) every lattice point is a centre of
inversion and (iii) only central forces between lattice sites. For
crystals with cubic symmetry the only CR is c12 = c44, which
reduces the number of independent elastic moduli from three
to two.

As was already noted in the famous lectures of
Sommerfeld [3], a Cauchy relation is not expected for
amorphous solids, since none of the prerequisites (i)–(iii)
holds. In agreement with this statement, the generalized
Cauchy relation deduced by Zwanzig and Mountain [19] for
high frequency elastic properties of simple liquids, c∞

11 =
3 · c∞

44 + AZM(T, p, . . .), does not signify a further reduction
of the elastic tensor components for isotropic symmetry. It
is rather a different parametrization of Hooke’s law for the
isotropic state, where AZM(T, p, ...) is a function depending
on the external variables temperature T , pressure p etc. In
this relation the prefactor ‘3’ of c∞

44 is a consequence of the
macroscopic elastic isotropy [19].

With this background it is astonishing that recently
generalized Cauchy relations (gCRs) according to equation (1)
have been reported in the form of linear transformations for
the temperature dependent elastic moduli of liquids, glasses
including metallic glasses, and ceramics [8, 15, 16, 20–23].
Such generalized Cauchy relations were even noticed
during non-equilibrium processes like polymerizations of
epoxies [8, 15, 20, 21, 23–25] and annealing of metallic
glasses [22, 26]. Most astonishingly, the elastic properties
of nanocomposites consisting of different amounts of
nanoparticles in a liquid also followed a gCR [20].

Despite the physical relevance of the gCR, the understand-
ing of its physical background was only crude. In an early stage
of their work Krüger et al combined the CR for cubic crystals
with the isotropy relation leading to c∞

11 = 3 · c∞
44 and added a

constant, yielding formally equation (1) [15, 16]. This strategy
did not lead to a satisfying interpretation of the Cauchy param-
eter A. Moreover, the Cauchy parameter A was connected to
elastic anharmonicity in the frame of mode Grüneisen parame-
ters [15] (third order elasticity), but this interpretation is prob-
ably of limited value if structure formation as observed during
polymerizations is considered (see section 3.5).

A step to a better understanding seemed to be made when
a gCR was found by the same group for a nanocrystalline
ceramic of cerium oxide with a Cauchy parameter A at least ten
times larger than those obtained for polymers [20, 21]. Based
on these results the magnitudes of the Cauchy parameters
A were related to the difference between local and global
symmetry.

3.2. The Cauchy parameter A of the gCR

In former publications [20, 21] we have speculated that the
Cauchy parameter A is in some way related to the difference
between the local asymmetry of the ‘elementary units’ (EUs)
and the global isotropy of the material in question. The
EUs are defined as usually in polymer physics (e.g. [5]) with
nanoscopic lateral dimensions above the atomic level, thus
yielding already continuum properties. These EUs are assumed
to have point symmetries differing from isotropy [5]. In
the case of a statistical distribution of the EUs, orientation
averaging leads to the observed isotropy. The following
calculation will show that the physical origin of the Cauchy
parameter A can be retraced to the elastic tensor properties of
the EUs. Without any important lack of generality we assume
in the following that the EUs have cubic symmetry. Hexagonal
symmetry leads to the same results; the calculations are just
lengthier [27].

Consider the generally valid case of an arbitrary
temperature, pressure, etc dependence between the elastic
moduli of the EUs, ccub

12 and ccub
44 :

ccub
12 = ccub

44 + A (T, p, . . .) . (5)

This relation is reminiscent of that given by Zwanzig and
Mountain [19] for high frequency frozen liquids. Making now
the crucial restriction that the parameter A does not depend on
T , p, etc, equation (5) simplifies to

ccub
12 = ccub

44 + A. (6)

The latter relationship implies that both elastic moduli depend
on T , p, etc in the same way:

∂ccub
12

∂T
= ∂ccub

44

∂T
,

∂ccub
12

∂p
= ∂ccub

44

∂p
, etc. (7)

The elastic moduli of the isotropic material under
consideration can now be calculated following an orientation
averaging [1, 4] using equation (6):

ciso
11 = 〈c11〉 = (3ccub

11 + 6ccub
44 + 2A)/5 (8)

ciso
44 = 〈c44〉 = (ccub

11 + 2ccub
44 − A)/5. (9)

Since the isotropy condition [4, 5]

ciso
12 = ciso

11 − 2ciso
44 (10)

holds for the isotropic nanostructured material on the typical
length scale for BS, the related gCR follows immediately:

ciso
11 = 3 · ciso

44 + A. (11)

This is equivalent to

ciso
12 = ciso

44 + A. (12)

Equations (6), (7) and (12) show that a gCR is obtained for the
isotropic material if the elastic moduli c12 and c44 of the cubic
subunits and the isotropic state depend in the same manner on
the external parameters. It has been shown recently [27] that
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similar calculations can be performed for EUs of hexagonal
symmetry, yielding again the gCR with the slope of 3. This
result suggests that identities or proportionalities between the
derivatives of the EUs’ elastic tensor components with respect
to the external parameters are at the physical origin of the
Cauchy parameter A. The latter conditions concern those
elastic moduli which in principle could be related by classical
CRs. It is worth noting that the above discussed procedure
nicely shows the significance of the slope of 3 in equation (11)
as an indicator for isotropic symmetry!

The Cauchy parameters A occurring in equations (6)
and (11) have been successfully compared for a cerium oxide
single crystal (cubic symmetry) and a nanocrystalline ceramic
made of cerium oxide [21]. If the driving parameter is
the temperature in an isotropic solid, this signifies that the
anharmonic part of the elastic interaction potential acts in the
same way on both elastic moduli ciso

12 and ciso
44 .

For the sake of simplicity we ignore in the following
the upper index ‘iso’. For high frequency frozen liquids
and amorphous solids, until now only positive A’s have been
observed [8, 15, 16, 20–26]. Negative A’s, although possible
as long as no elastic stability limit is violated, have not
been observed yet. From dynamic stability conditions for
the high frequency frozen liquid state, it is clear that c∞

11 >

0 and c∞
44 > 0 must hold. According to equation (11)

this implies that A must be smaller than the minimum of
c∞

11(T, p, u, . . .) (u: chemical conversion). This condition
yields the possibility for a rough estimate of the Cauchy
parameter A. Elastically soft materials will show small A’s,
typically of 2–4 GPa [8, 15, 16, 20, 23–25]. On the other
hand, for a nanocrystalline ceramic of cerium oxide the Cauchy
parameter A is as large as 45 GPa [20, 21] and of the same
order of magnitude for metallic glasses [22, 26].

Coming back to the temperature T as the driving
parameter for c∞

11 and c∞
44 in polymerized samples, the Cauchy

parameter A becomes equal to the modulus c∞
11( �= c0

11) at the
temperature Tstab for which limT →Tstab c∞

44 → 0 holds. To put it
differently, at the temperature Tstab the Poisson number goes to
0.5. The latter limit can be considered as the ultimate stability
limit, for which the material behaves for each frequency as a
liquid.

Having read the papers of Fioretto et al and their
interpretation of the Cauchy parameter A [23, 25] we want to
make the following comments.

(i) As shown above, the gCRs are based on the applicability
of elasticity theory, otherwise complex elastic tensors
would be involved. Any gCR of liquids will break down at
sufficiently low frequencies since c44 becomes a complex
quantity in the excess attenuation regime before going to
zero. It should be stressed that the shear mode becomes
overdamped for low frequencies, whereas the longitudinal
mode does not.

(ii) gCRs may exist even if no frequency dependence of the
elastic moduli is present. This seems to be the case
for the nanocrystalline ceramic of cerium oxide. In
such a case the interpretation of A by Fioretto et al in
terms of the static adiabatic longitudinal modulus becomes
meaningless. If hypersonic dynamics are present, the

interpretation of A by Fioretto et al is in contradiction to
ours given above.

(iii) We agree with Fioretto et al that for low excess attenuation
a pseudo-gCR can still be approximated, but this will
be at the cost of the slope and the Cauchy parameter
A. If hypersonic dynamics start to play a role these
dynamics usually affect the shear modulus more strongly
than the longitudinal one. Thus first of all the slope of the
linearized c11(c44)-relation will decrease.

This influence of hypersonic excess attenuation on the
gCR slope might be a reason for slopes smaller than 3 observed
in the literature.

Some years ago we calculated a relation between
temperature-driven longitudinal and transverse MGPs γL and
γT on one hand and the Cauchy parameter A of the related
temperature-driven gCR on the other [15]:

A = 2 · c∞
11 (T0) · γT (T0) − γL (T0)

1 + 2γT (T0)
(13)

where T0 is the considered reference temperature. This relation
will be discussed in section 3.5 in the frame of the third order
elasticity’s role for gCRs.

3.3. First interpretation of the experimental data

Having established a more physical insight concerning the gCR
and particularly the Cauchy parameter A, we will discuss now
the experimental data obtained during the room temperature
polymerizations of three PUs.

Since the frequency of visible light is about 5 × 1014 Hz,
the refractive indices are derived from dynamically frozen
dielectric constants. As discussed above, there exists a simple
relation between refractive indices n and mass densities ρ (see
equation (4)).

Figure 1 shows the calculated data of mass density ρ

as a function of chemical conversion. The used conversion
data have been measured as a function of time and have been
published previously [14]. Beside the fact that this kind of
representation is physically more reliable than plots versus the
time, it also has a shortcoming: in this parametric plot both
coordinate values are affected by errors. Obviously, the density
increases with the chemical conversion and decreases with
increasing concentration of the resin component Desmophen
2060BD. The bending of these curves is most important at the
beginning of the polymerization. In the chemical conversion
regime u > 30%, ρ(u) behaves almost linearly.

As a matter of fact, the evolution of the mass density
shows no hint of the sol–gel transition or of the chemical
freezing process. The slight irregularities of these curves
are solely due to the evaluation difficulties of the infrared
spectroscopic bands [14]. Consequently, neither the sol–
gel transition nor the chemically induced glass transition
produce an anomaly within the mass density versus chemical
conversion curve. In other words, the onset of static shear
stiffness at the sol–gel transition does not affect the mass
density of the PU. The same argument holds true for the
further onset of shear rigidity at the chemically induced glass
transition.

4
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Figure 1. Mass densities ρ versus chemical conversion u for the
three polyurethanes during the polymerization at 297 K. As
indicated, the deviation from linearity in ρ(u) is smaller than 0.1%
between 30 and 70% of chemical conversion for PU 100:0.

Figure 2. Transverse hypersonic velocities v∞
T versus chemical

conversion for the three polyurethanes during the polymerization at
297 K. The small black dots shown below 55% (PU 100:0 and
80:20), respectively below 40% (PU 95:5), of chemical conversion
are calculated via the gCRs (see section 3.4).

As in the case of the mass density, the transverse and
longitudinal hypersonic velocities v∞

T and v∞
L were measured

as a function of time but plotted versus the chemical conversion
(figures 2 and 3, respectively). All data shown in figures 2
and 3 are high frequency frozen properties; sound velocity
data showing acoustic excess attenuation are omitted for the
representation of the gCRs (cf [14]). Because of the extremely
small Pockels coefficients for the shear phonons, PU 80:20 was
the most difficult to measure, which results in the large data
scatter. Only above a chemical conversion of 40% (PU 95:5),
respectively 55% (PU 100:0 and 80:20), could shear phonons
be resolved from the noise (see figure 2). A first inspection
of figures 2 and 3 shows that PU 80:20 reacts to almost
100%. The other polyurethane compositions, which reach
smaller final degrees of polymerization, have undergone a
chemical glass transition. These glass-forming PUs continue
to polymerize only slightly after chemical freezing [14].

Figure 3. Longitudinal hypersonic velocities v∞
L versus chemical

conversion u for the three polyurethanes during the polymerization at
297 K. As indicated, the deviation from linearity in v∞

L (u) is 4%
between 30 and 70% of chemical conversion for PU 100:0.

A comparison of figure 1 with figures 2 and 3 reflects
a qualitatively similar behaviour of the mass densities
and the hypersonic velocities. The PUs stiffen with an
increasing degree of chemical crosslinks (related to the
chemical conversion) and become softer with an increasing
concentration of the resin component Desmophen 2060BD.
There is, however, a difference between the evolution of
ρ and v∞

L as a function of chemical conversion: the v∞
L -

curve is much more bent below 55% of chemical conversion
than ρ. Considering high frequency frozen elastic properties,
the increase of the longitudinal modulus c∞

11 is essentially
not produced by densification. Unfortunately, we have no
experimental access to the shear modulus c∞

44 for conversions
below 55%. Provided that the gCRs given below are valid
below u = 55% (except for PU 95:5), the lacking shear
moduli c∞

44 and velocities v∞
T can be calculated (see figure 2

and section 3.4).
According to our previous work [14] the sol–gel transition

should take place for all PUs between conversions of 65
and 70%, and the glass transition of PU 100:0 and 95:5
around 70, respectively 80%. Taking again into account the
evaluation difficulties of the chemical conversions, there are no
hints of chemically induced sol–gel or glass transitions in the
hypersonic velocities. This result suggests that the structural
changes accompanying the sol–gel and glass transition do
not affect either the shear or the longitudinal deformation
at hypersonic frequencies. The reason for this is probably
the different couplings of the static and the high frequency
deformation modes to the order parameters of the chemically
induced sol–gel and glass transitions. In line with the results
found for epoxies, this result predicts the existence of gCRs for
all three PU compositions and for the whole considered range
of chemical conversion.

3.4. Experimental verification of the gCRs

Indeed, the gCRs displayed in figure 4 confirm the lin-
ear behaviour between c∞

11 and c∞
44 previously found for

5
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Figure 4. The evolution of the gCRs for the polyurethanes during the
polymerization at 297 K with the chemical turnover as a parameter.

the non-equilibrium process of polymerization in epox-
ies [8, 15, 20, 23–25]. Although this kind of structure for-
mation has only been studied for two classes of polymers, it
seems now to be certain that at least under certain circum-
stances gCRs are not violated either by isostructural phase tran-
sitions or by non-equilibrium. The striking question remains
why the moduli c∞

11 and c∞
44 do not develop independently dur-

ing the non-equilibrium polymerization, as was observed dur-
ing the quenching of a glass-forming liquid [16]. We believe
that the slow and smooth development of the properties during
the studied polymerizations is probably responsible for this be-
haviour. In other words, as long as v∞

L and v∞
T reach their local

equilibrium during the collection time of each data point, gCRs
are not violated. A similar result was reported for the annealing
of metallic glasses [22, 26].

Closer inspection of the data presented in figure 4 shows
that the slope of the three different gCRs is consistent with
a value of 3 within the margin of error. This value is in
line with the assumed macroscopic isotropic symmetry of
the PU samples [19]. The three gCRs show a small, but
significant, variation of the Cauchy parameter A with the resin
composition: the A parameters vary between 2.3 GPa and
2.6 GPa for PU 80:20, respectively PU 100:0. These results are
a first hint of a dependence of A on the molecular arrangement,
which changes with the resin composition, of course.

Taking into account the completely different chemical
compositions of polyurethanes and epoxies, it seems
astonishing that for both material classes very similar
values for the Cauchy parameter A (close to 2.5 GPa) are
discovered [8, 15, 20, 23–25]. On the other hand, as discussed
above the condition A < min{c∞

11(u)} should hold, which
limits the Cauchy parameter A roughly to the rather similar
measured values of c∞

11 at the beginning of the polymerization
process.

Since the sound velocities v∞
L were measured in the high

frequency frozen regime for all PUs, we could calculate the
corresponding v∞

T -data for conversions between 30 and 55%
using the gCRs. As expected, the v∞

T -curves are also bent at
low degrees of polymerization (see figure 2).

Figure 5. Comparison between PU 95:5’s gCRs for the
polymerization (triangles) and for a temperature variation of the
polymerized sample (squares).

As published previously [8, 15, 16, 20–23], gCRs can
also be determined for temperature dependent measurements.
Representative for all compositions, figure 5 shows a
comparison of the gCRs obtained from polymerization and
from temperature dependent measurements performed on PU
95:5. Within the margin of error both gCRs possess the same
Cauchy parameter A. The evaluations of the temperature
dependent gCRs for PU 100:0 and PU 80:20 lead to the
Cauchy parameters A = 2.60 ± 0.01, respectively A =
2.41 ± 0.03, agreeing well with the values observed for
the polymerizations. This implies the interesting result
that the Cauchy parameter A measured as a function of
temperature around the fixed point at room temperature can
be used to predict the polymerization behaviour of c∞

44(u)

on the basis of c∞
11(u)-data. It should be stressed that this

experimental evidence is rather astonishing from the physical
viewpoint. The variations of the elastic moduli c∞

11 and c∞
44

are expected to be driven by completely different physical
processes during the non-equilibrium polymerization on one
hand and during the cooling/heating experiment on the other.
Network formation modifies the harmonic and the anharmonic
part of the elastic part of the thermodynamic potential (called
the ‘elastic potential’), whereas the temperature variation of the
elastic moduli is predominantly driven by the anharmonicity of
the elastic potential [8, 14].

3.5. Second order versus third order elasticity

In a previous paper, Krüger et al [15] related by a simple
calculation the gCR in the case of temperature dependent
measurements for amorphous materials to the anharmonicity
(third order elasticity) of the elastic potential, using thermal
mode Grüneisen parameters (see equation (13)) [1, 4]. This
interpretation means that, under conditions where temperature
(or pressure) changes modify the elastic moduli, c∞

12 and c∞
44 are

driven in an identical manner, only by anharmonicity. Under
these conditions the Cauchy parameter A could be interpreted
in terms of mode Grüneisen parameters.

6
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The situation is surely different in the case of reactive
network-forming polymers like epoxies and polyurethanes.
These materials significantly change their morphology in the
course of polymerization. Thus, due to polymerization,
a successive change of the elastic potential is expected,
superimposed by changes of these properties due to gelation
and chemical freezing [14]. There is a priori no reason
why under these conditions a linear relation between c∞

11
and c∞

44 should hold true. In contrast to this expectation,
the experimentally observed gCRs indicate that the elastic
moduli c∞

12 and c∞
44 are driven in an identical manner even

in the presence of non-equilibrium processes and isostructural
transition phenomena.

Two relevant questions remain. (i) Why do strong
morphological changes due to the formation of a molecular
network on one hand and temperature changes on the other
yield the same Cauchy parameter A? (ii) Why does the initial
composition of the PUs related to different concentrations of
Desmophen 2060BD change the Cauchy parameter A whereas
morphological changes due to the formation of a molecular
network do not?

(i) The high frequency frozen moduli of condensed matter
for given external parameters can be derived from the elastic
potential. The splitting of this potential into only a quadratic
and a cubic part is of course an approximation. Whereas the
temperature dependence of the elastic moduli is predominantly
determined by the cubic part of the potential, the dependence
upon structure formation during polymerization cannot be
specifically attributed. Pure mathematical arguments are
sufficient to show that the gCR related to polymerization and
that related to temperature change are identical as soon as
both gCRs have one point in common. This is always true
if the temperature measurement is started after polymerization
has finished, and this result is independent of the physical
mechanism behind both processes.

Table 1 shows the values for the thermal MGPs at
the reference temperature T0 = 297 K of isothermal
polymerization for PU 100:0 and PU 95:5. Obviously the A-
values calculated on the basis of temperature-driven MGPs are
compatible with those derived from gCRs. However, from the
point of view of data analysis the calculated values of A are
rather uncertain. This calculation leads at least to a rough idea
of elastic anharmonicity at the end of polymerization within the
glassy state. Considering the behaviour of thermal MGPs at the
glass transition, it is expected that the degree of anharmonicity
is larger for lower degrees of polymerization. Since the
Cauchy parameter A is invariant in a given gCR, according
to equation (13) the thermal MGPs of the transverse and the
longitudinal acoustic mode have to change in such a way that
the factor [γT(T0) − γL(T0)]/[1 + 2γT(T0)] remains almost
constant. It is worth noting that the thermally induced MGPs
and the polymerization induced pseudo-MGPs have nothing in
common, since the first remains physically meaningful at the
end of polymerization whereas the latter does not [14].

(ii) A unique gCR was observed for nanocomposites
consisting of different amounts of silica nanoparticles mixed
in the same glass-forming oligomer [20]. Although we did
not expect such a nanoparticle-concentration-dependent gCR,

Table 1. Hypersonic frequency and refractive index data and
thermal mode Grüneisen parameters γL and γT as determined during
a temperature variation around T0 = 297 K performed on the
polymerized 95:5 and 100:0 PUs. The Cauchy parameters A were
calculated according to equation (13).

PU 95:5 PU 100:0

fL (GHz) 6.63 ± 0.01 6.57 ± 0.01
d fL/dT (GHz K−1) (−63 ± 2) × 10−4 (−51 ± 1) × 10−4

fT (GHz) 3.09 ± 0.01 3.03 ± 0.01
d fT/dT (GHz K−1) (−39 ± 5) × 10−4 (−29 ± 6) × 10−4

n 1.5473 ± 10−4 1.6118 ± 10−4

dn/dT (K−1) (103 ± 3) × 10−6 (−180 ± 1) × 10−6

γL 6 ± 1 7.0 ± 0.1
γT 9 ± 2 8 ± 4
A (GPa) 2 ± 2 1 ± 3

it was proven to exist at least until 20 vol% of silica in
the oligomer. That mixtures of reactive network-forming
oligomers do not necessary follow a gCR as a function of
composition is demonstrated in this work for the modification
of our PU by Desmophen 2060BD. Already the introduction of
small amounts of Desmophen 2060BD into the liquid reference
polyurethane PU 100:0 (leading to PU 95:5 and PU 80:20)
results in a nonlinear change between c∞

11 and c∞
44 . This

behaviour is reflected in the decrease of the Cauchy parameters
A of the gCRs with the addition of Desmophen 2060BD.
Contrariwise and astonishingly, the formation of chemical
crosslinks of a given PU composition maintains linearity
between both elastic moduli until the end of polymerization.

4. Conclusion

The evolution of the hypersonic longitudinal and shear
moduli during the polymerization of polyurethanes yields
the surprising result that the generalized Cauchy relations
remain valid during the non-equilibrium chemical reactions.
Even more, the polymerization-driven gCRs are identical
to the related temperature-driven gCRs. This behaviour
can be derived using simple mathematical arguments and
confirms the results previously found for epoxies. Even
the chemical sol–gel transition and the chemically induced
glass transition do not violate these relations. A model
calculation based on an orientation averaging applied to non-
isotropic elementary units shows that the same dependences of
certain elastic moduli of these units on the driving parameter
(temperature, pressure, chemical conversion, etc) is at the
origin of the Cauchy parameter A. The Cauchy parameter
A is interpreted as an ultimate stability limit for the high
frequency frozen longitudinal modulus of the isotropic state.
In contrast to the behaviour of other multi-component systems,
changing the amount of Desmophen 2060BD in PU leads to a
nonlinear relation between the transverse and the longitudinal
elastic moduli, thus violating gCRs which depend on the
concentration of Desmophen 2060BD. The effect of second
order and third order elasticity on the generalized Cauchy
relation is not quite clear yet, and needs further investigations.
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